@凯利公式
凯利公式的缘起
凯利公式起源于上个世纪60年代,原本是为了在信息传输过程中,降低噪音在通讯中的干扰,使噪音干扰引起错误的可能性降低到零,后来被人应用到赌场的投注比例上和投资的资产配置上。其实公式的作者,John Larry Kelly,并不是一个资深赌徒,而是一位著名的物理学家,他发明这个公式的时候正是著名的AT&T的Bell Lab 中的一名研究科学家,研究方向是当时还算新兴前沿的电视信号传输协议。凯利的方法参考了香农关于长途电话线的嘈音的工作。值得一提的是,据说香农本身也是一个优秀的投资人,数十年收益率在20%以上,当然这些与他本人在信息论中的成就相比显得并不为人所知。
公式表达式
凯利公式的表达式为f*=(bp-q)/b,其中f*为计算出来的凯利最优投资比例,b为赔率,即期望盈利/预计亏损,p为成功概率,q为失败概率,即1-p。凯利公式认为,只要投资者每次都用全部投资金额的f*比例来进行投资,就可获得长期增长率的最大化,并且不会有破产的可能(当然这只是理论上)。
f* = (bp - q) / b=p-q/b
其中,f* = 投注金额占总资金的比例
p = 获胜的概率
q = 失败的概率,q = 1-p
b = 赔率,例如在轮盘赌中押单个数字,b = 35,押红黑,b = 1。
举例比如21点下注问题,假设总赌本10,000美元,玩家取胜的概率是51%,赔率1:1(实际胜率和赔率略有偏差,但相距不大),那么凯利公式给出的最佳赌注是:
$10000 * (1 * 0.51 - 0.49)/ 1 = $200
凯利公式解读之一、赢面越大下注越大
我们暂且不谈公式的理论推导,那个可能涉及到很多数学,我们先来弄明白公式背后真正的“意思”。
首先,公式中分子的bp - q 代表“赢面”,数学中叫“期望值”(expectation),凯利公式指出:正期望值的游戏才可以下注,这是一切赌戏和投资最基本的道理,也就是前面讲的“没有赢面,决不下注”。
凯利公式解读之二、要以大博小不要以下博大
其次,赢面还要除以“b”才是投注资金比例。 也就是说赢面相同的情况下,赔率越小越可以多押注。 这一点不容易直观理解,我们用个例子来说明。 下面三个正期望值的游戏,你看看选哪个:
1. “小博大”:胜率20%,赢了1赔5,输了全光。bp - q = 5*20% - 80% = 20%
2. “中博中”:胜率60%,1赔1。bp - q = 1*60% - 40% = 20%
3. “大博小”:胜率80%,1赔0.5。bp - q = 0.5*80% - 20% = 20%
三个游戏的数学期望值一样,都是20%,或者说押100元平均赢20元。 按大部分国人的赌性,恐怕会选“小博大”游戏吧? 但是用凯利公式中的“b”一除,“小博大”游戏只能押总资金的4%,“中博中”可以押20%,“大博小”可以押40%。 赢钱速度“大博小”快多了! 前面不是讲过“久赌必赢的游戏应该选波动性小的”吗? 说的就是这个了。
现实中,爱玩“小博大”的多半是赌客。 谁爱玩“大博小”呢? 赌场! 华尔街的职业投资家们很多玩的也是“大博小”,因为便于使用杠杆(押大赌注)。
凯利公式在实战中的几点注意事项
首先,凯利公式适合于赔率和胜率都是固定的赌博游戏,而期货策略的胜率其实是很不稳定的,都是事后统计的,依赖于统计的时段选取,并不是一个固定的稳定的值。
举个例子,假定一个抛硬币的简单赌局,正面赢2元,反面输1元,很容易确定赔率b=2,胜率p=0.5,最后得出f*=0.25,即每次应当投入到赌局中的资金比例为当前总资金的25%。而在现实投资中,这两个参数都是很难确定的。
大部分情况下,投资的赔率和胜率并不是事先确定好的,投资者需要自己估计。虽然预先确定好止损和止盈或许可以确定交易的赔率,但是交易的胜率是根本无法确定的,这完全需要根据经验或者历史统计来估计,这就导致最后计算出来的结果并不是最准确的资产配置比例。
一句话,现实中的投资并不像抛硬币赌局那么简单的游戏,投资是一个不断变化的游戏,凯利公式只能作为资产配置的参考。
其次,凯利公式有一个非常重要的假设经常被投资者忽略:投资者单次最大损失为此次投资的全部金额。所以无论如何,每次亏损都不会涉及剩余本金。而在期货投资或者是其他具有杠杆的衍生品交易中,如果没有设置止盈止损,单次投资的盈利和亏损可以说是没有限度的,有时会造成资产曲线很大的振幅,亏损严重时甚至会导致没有足够的资金继续交易,这也是凯利公式作为资产配置在实际应用中的需注意的问题。举个例子,假设投资者有100000元资金投资某个一手保证金为40000元的产品,交易策略的历史统计比如是赔率b=5,胜率p=0.5,,根据凯利公式可以计算出最佳投资比例为40%,按照总资金计算,即40000元,可以交易一手该产品。比如若干笔交易之后,期末资金亏损至38000元,已经不足一手保证金了,除非注入新的资金,否则将无法继续进行接下来的交易。虽然计算出来的最佳投资比例是40%,但是实际资金占用比例往往是不能精确满足的,这是由于投资标的物的最小单位是40000元,这也是凯利公式的假设在实际应用中的一个缺陷,货币与投资产品不能无穷分割。
凯利公式在投资中的应用
1、凯利公式在仓位控制中的应用
最直接的应用就是仓位控制,不过如上所述既然凯利公式中的胜率和赔率都是动态的,突发事件、大资金流动等因素都会在短期内对胜率和赔率产生巨大影响。在实际投资中,就要根据情况,适当地调整仓位。然而,一方面考虑到交易成本,频繁地进行加仓减仓也是不切实际的。另一方面,由于投资标的无法无穷分割,要使资产配置精确达到凯利值很难。所以,根据经验,一般凯利值变化超过10%,才有必要调整仓位。
2、凯利公式在选股和建立投资组合方面的应用
在投资组合的应用中,也经常以 f = excess return/variance 的形式出现,在某种意义上f的数值越高也就是投资的价值越大,比如一个简单的选股策略是 a.计算股票池中每只股票的Kelly leverages 作为排序score(这里过去一年内每日收益的mean/var) b.从大到小进行排序,选出前10名的股票,价格在5日均线之上时才购买,平均购买,每月调仓。
凯利公式的推广之一
注意,这个广为人知的公式只适用于全部本金参与的情形,即输的情况下,亏光,而适用更为广泛的凯利公式是:f*=(p*rW-q*rL)/rW
其中f*,p,q同上,rW是获胜后的净赢率,rL是净损失率,rW/rL是盈亏比。
比如,我有1万元买股票,30%幅度止盈,10%的幅度止损,最多盈利3000,最多亏损1000,这里rW=0.3,rL=0.1,此时可以计算最优仓位,但是由第一个公式是算不到的,主要原因是这里我并没有投入所有本金。
换句话说,第一个公式不过是第二个公式里rL=100%的情形。
发布时间:2018-11-22 10:00:00      关键字:金融知识       阅读次数:37
上一篇:信用违约掉期
下一篇:股票5种估值方法
@站内公告
MCL加入了“语录”板块。这个板块主要收录著名投资者和一些投资书籍发表过的“名人名言”。
@站内查找
查找
Copyright @ 2015-2018 by szc  桂ICP备11003301号-1  桂公网安备4504032000027号